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Abslract  I t  is argued lhat cnllision damping of excitations m a modulated (quasi-periodic) 
system has a pronounced effect on results for the frequency- and waveuector-dependent 
response function o k l v e d  in scatlering experiments, Even a relalively small damping 
can remove all vestige of some of the striking features predicted lor the undamped 
model. Results are obtained for a model that can be solved without approximation in 
the absence of damping. 'The later is inlroduced by extending the frequency lo complex 
values, and the magnitude of the imaginaly mmponent ir viewed as lhe damping mntml 
parameter. 

1. Introduction 

Sysems that essentially depend on two or more length scales display various intriguing 
properties. In condensed matter and materials research, the best-known examples of 
modulated (quasi-periodic) systems are electrons in a crystal subject to an applied 
magnetic field, incommensurate crystal phases, and magnets with a longitudinally 
modulated configuration of the moments. Intriguing properties include an energy 
spectrum that as a function of the ratio of length scales forms a fractal diagram 
(Hoktadter butterfly). The fragmentation of the energy spectrum is a key element in 
the integer quantum Hall effect; wave functions of states in a gap are localized while 
those for a band are extended, the localized states being characterized by a Lyapunov 
exponent. In view of this, the density of states is highly structured. Similar structure 
appears in response functions which describe scattering experiments and depend on 
frequency- and wave-vector transfers. 

In conkonting predictions for standard models of modulated systems with experi- 
mental data there naturally arises a question as to what extent predicted structure 
might be degraded by collisions, both between .excitations and of excitations with 
impurities and defects. In an incommensurate crystal the latter can be viewed as 
generating a finite distribution of length scales, and an energy spectrum which is 
a union of many similar spectra. Hence, singular features in response functions 
for simple systems might be blurred by collisions, together with some filling of the 
band gaps. Since all materials contain impurities and defects to some greater or lesser 
extent, and thermally activated collisions between excitations are usually present, there 
is interest in gauging the influence of collisions on response functions for modulated 
(quasi-periodic) systems. 

Here, we report the first basic study of collision-induced effects in quasi-periodic 
systems, achieved by exploiting the existence of exact, closed expressions for response 
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functions for the standard (undamped) models. The proposed modification of the 
theory is accomplished by adding to the excitation energy an imaginaly part. The 
form for including collision damping satisfies causality, and therefore ensures that 
the poles of the propagator (Green function) occur only in the lower half-plane of 
the complex frequency. It is found that a modest value for the collision damping 
parameter (y) leads to significant changes in the shape and structure of response 
functions, e.g. with y equal to 5% of the total band-width virtually all trace of 
low-frequency structure is removed from the observed response function, while high- 
frequency structure is modified but stiU distinct. An important finding is that the 
response at zero frequency is insensitive to damping, and so remains a characteristic 
feature of a quasi-periodic system. 

An alternative calculation method to the proposed use of a phenomenological 
damping parameter is to solve a specific model of a mixed system, with an underlying 
modulated structure. For example, a realistic model for lattice vibrations in a mixed- 
mass incommensurate crystal can be constructed from the solution of a model with a 
single mass defect (bvesey and Westhead 1990) combined with the average T-matrix 
approximation. However, finding from studies of mixed commensurate systems lcad 
us to expect the phenomenological approach to produce the salient features induced 
by collisions. 

One motivation for the present study is the marked discrepancy between predic- 
tions for a standard model of a modulated magnet and available experimental data; 
erbium metal possibly supports a longitudinally modulated phase when the tempera- 
ture is fractionally less than the critical temperature. Experimental data for this phase, 
obtained by inelastic neutron scattering (Nicklow and Wakabayashi 1982), bear little 
resemblance to results for a standard model &antwin 1990). The predicted dynamic 
structure is remarkably robust with respect to reasonable variations in the parameters 
(exchange and anisotropy energies) and Lanhvin (1990) was unable to find satisfactory 
agreement between theoretical and experimental findings. While the quality of the 
experimental data can be much improved, using state-of-the art instrumentation and 
data analysis methods (Nicklow and Fernandez-Baca 1991), nonetheless it is likely 
that in erbium at an elevated temperature there is some effect on the neutron scat- 
tering response from thermally activated collisions between spin excitations. Collision 
damping is predicted to modify the dynamic structure such that it is more like the ex- 
perimental data than without damping, but reservations about the quality of the data 
and precise magnetic structure of erbium metal (Cowley 1991, Lin ef al 1992) mean 
that, at this moment, a confrontation of theory and experimental results has minimal 
value. Rather, the present work will be useful in analysing future data on well char- 
acterized modulated magnets In this context, the compound PrNi,Si, orders at 20 K 
in a modulated structure which remains stable to extremely low temperatures owing 
to the existence of a nonmagnetic singlet as the crystal-field ground state (Blanco el 
a1 1992). 

The phenomenological treatment of collisions discussed here should be useful in 
the interpretation of response functions for any quasi-periodic system. In general, 
the damping parameter will depend on the system's characteristics and temperature, 
magnetic field etc. Before giving details of the calculation it is perhaps worth men- 
tioning that the present treatment produces collision-induced features which depend 
on both the frequency and wave vector, i.e. they have a non-trivial structure. More- 
over, because of the singular nature of the spectrum of undamped fluctuations, it is 
not sufficient to calculate the collisional self-energy to leading order in the damping 
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parameter. Such a scheme, while adequate for most conventional systems, when 
applied to a modulated system produces spurious effects. Couched in a slightly dif- 
ferent language, it is essential to preserve the full algebraic structure of the response 
function. 

A theory for the response function of a standard model of a modulated system 
is briefly surveyed in the following section. A minimum of detail is given since 
the theory has recently been reviewed (Lovesey et af 1991). The phenomenological 
treatment of collision damping is given in section 3, and an example developed in 
section 4. Results are discussed in section 5. 

2. Response function 

In order to minimize the textual material, it seems wise to focus on just one of the 
models mentioned in the introduction. We choose a standard model for transverse 
spin fluctuations in a modulated magnet, and follow the notation used by Lovesey 
(1988). In the absence of the longitudinal modulation of the configuration of mag- 
netic moments, the transverse spin fluctuation spectrum is exhausted by spin-wave 
excitations which are strongly dispersive. Even a very long-range modulation of the 
magnetic moments removes the strong dispersion, and produces a finite intensity at 
zero frequenq and a singular fragmented structure at finite frequencies. 

When the external wave vector q is parallel to the modulation wave vector Q, 
the equation of motion for spin-flip operators reduces to a second-order difference 
equation with coefficients (n an integer) 

t ' 8  

W, = 1 + a r o s ( q  + nQ)  + Pcos 2(q+  nQ)  (2.1) 

in which the energy parameters a, 0 are related through 

.YIP = -4 cos Q. (2.2) 

The response function is obtained from a propagator, or Green function, expressed 
in terms of two infinite continued fractions in which the coefficients are 

t:, = LvnWn+l. 

Manipulation of the continued fractions is made easier by expressing them in terms of 
two sets of polynomials (in the frequency - w )  derived from the common recursion 
relation 

The two sets of polynomials {A,,}, {B,} are distinguished by their initial values, 
namely, 

A - ,  = Bo = 1 A, = B-, = 0 .  (2.5) 

At this juncture it might be observed that the problem defined is very amenable to 
numerical methods. Efficient algorithm exist for the diagonalization of tri-diagonal 
matrices, or the straightforward calculation of {An), {B,} from (2.4). Such a method 
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inevitably means that results are for a rational value of Q, and presumably approxi- 
mate closely to those for an irrational (incommensurate) value. This is confirmed in 
calculations made with numbers from a Fibonacci sequence that converge to an irra- 
tional. Use of successively higher-order rational approximates generates increasingly 
fine structure in the response function. Hence, beyond a certain point the additional 
structure is possibly of only mathematical interest, since it is not likely to be resolved 
in an experiment. Hofstadter's viewpoint was that common sense tells that there can 
be no physical effect stemming from the irrationality of some parameter (Hofstadter 
1976). 

A numerical method is tantamount to using 

Q = 2 n M / N  (2.6) 

where M and N are (coprime) integers. With this representation for the modulation 
wave vector t ,  is N-fold periodic, i.e. t ,  = t,,,. In consequence, the continued 
fractions required for the propagator are futed points of a fractional linear transfor- 
mation, and the propagator can be expressed in closed analytic form. Note that the 
algebraic method referred to makes no use of translational invariance of the lattice 
on which the magnetic atoms are arranged, for this invariance is not present in the 
incommensurate magnet that is being modelled. Use of translational invariance and 
the representation (26) for Q leads to a response function that is zero eveqwhere 
except at the N normal-mode frequencies. 

The propagator that describes transveme spin fluctuations in a modulated magnet 
is conveniently expressed in terms of the function 

L N ( W )  = ( z n N ) 2  - ( A N - l ( W )  + (2.7) 

where 

ilN = tot l  ... t N - ,  N > 2. (28) 

If we denote the propagator by G(w) then the response funcrion observed in an 
experiment is 

In this expression, x = 2S/W, is the wave-vector-dependent susceptibility (S is the 
magnitude of the spin moment) and the imaginary part of C is calculated with the 
rule w -t w + iq and 7 -t O+. 

L N ( w )  is a polynomial in w of degree 2N and L N ( w )  = 0 has only real roots. A 
band (gap) is defined by L N ( w )  > 0 (6 0). For N even (odd) there are N - 1 ( N )  
bands, and B N - l ( ~ )  is of one sign in a band. Additional properties of the spectrum 
together with several specific examples of Im C(w) can be found in papers by Lavesey 
(1988) and Lantwin (1990). It is usually the case that Im G(w) is singular at the 
band edges; such behaviour is difficult to extract from numerical work, and indeed 
the existence of the singularities makes the mrrect calculation of Im G(w) quite a 
subtle numerical problem. One example of the spectrum of spin fluctuations in an 
(undamped) modulated magnet is provided in figure 1. 
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Figure 1. frequency spectrum (-ZIm G ( w ) / w x )  of a modulated (quasi-periodic) 
system is displayed as a function of w for fhree values of the damping parameter, Mmely 
7 = 0. 0.1 and 0.5. Other quantities required to specify the model system are N = 5, 
q = 0.25n, and p = 0.15 with a determined by (2.2). ?he data in the figure are 
generated by (3.3) using lhe appropriate signs for el and e2 to yield positive values for 
the displayed quantity. 

3. Collision damping 

As mentioned in section 1, it is entirely possible to analyse convincingly some specific 
models of collision damping, such as that generated by substitutional defects. Damp- 
ing due to collisions between excitations is usually a more demanding theoretical task. 
An alternative viewpoint is to introduce into the theory a phenomenological damping 
parameter (y) and model collisional effects by complexification w -+ w + iy of the 
exact analytic expressions provided in section 2 Such a scheme is justified when there 
is no experimental evidence to favour a specific mechanism. In the present case, of 
fluctuations in modulated (quasi-periodic) system, it is a sensible method by which to 
gauge effects of collision damping in models of observed response functions. It will 
be shown that our treatment of damping predicts non-trivial changes in the spectra. 

The choice of sign for y 2 0 in complexification of the theory ensures that the 
poles of the propagator (Green function) occur only in the lower half-plane of the 
complex 6equency. Introduction of a damping parameter is, of course, very familiar 
in quantum mechanics in the form of pole avoidance. In the present context, it is 
worth mentioning that the condition y > 0 ensures convergence of the temporal 
Fburier-Laplace transform of the causal Green function used in our formulation of 
the theory. 

The appropriate prescription for the response function is relatively simple. Let us 
define 

b ( w )  = b l (w)  + ib,(w) = - L N ( w  + iy) 

a ( w )  = q ( w )  + ia2(w) = BN-,(w +iy ) .  

( 3 4  

( 3 4  
Straightforward algebra then yields for the spectrum the following result: 

(3.3) 

where 
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e ,  = { [J(bf + b:) - b,] } I ” .  (3.5) 

Note that a2. b, and e, vanish in the limit y -+ 0, in which case we recover the 
expression used in previous studies. For e, and e2 there is a common phase factor 
( A I )  not displayed in (3.4) and (3.5) about which we have more to say later. 

The functions b,(w) = - L N ( w )  and a l ( w )  = B N - , ( w )  are derived by using 
the recursion relations provided in the previous section. It seems that the easiest way 
to find b,(w) and az(w)  is to expand L N ( w  + iy) and BN-*(w + iy) in y; b 2 ( w )  
and a,(w) are polynomials in y of order 2N -1 and N -2, respectively. It is readily 
shown that approximating b,(w) and a,(w) by expressions correct to first order in 
y generates spurious effects in the response function. As a result of the dependence 
of b, and a, on y and w (and the external wave vector q )  the contribution of the 
collision damping to the response function is non-trivial; an example is provided in 
the following section. 

The observed response function is, of course, a quantity that is positive or possibly 
zero. In our notation, the  observed response function is proportional to -1m C(w). 
Now it is easy to show that (3.3) as a function of w > 0 is not of one sign. This 
feature is not a consequence of introducing collision damping, and it persists for 
y 0. A positive result for -1m G(w) is related to the phase factor (fl) common 
to e, and e2, which in turn is related to the convergence of the continued fractions in 
the formal solution for the propagator. This topic is thoroughly discussed by Lovesey 
and Westhead (1990) and Lovesey el al (1991). For the present it sullices to say that 
the correct prescription for the phase of e2 (and hence e,) is that which renders 
-1m C ( w )  positive. 

4. Example 

Consequences of collision damping introduced in section 3 have been investigated for 
several systems. Our findings are illustrated by reporting results for one case, and 
some of these are displayed in figure 1. 

We have chosen to report results for the modulated magnetic discussed in sec- 
tion 2, taking the particular case N = 5. In the absence of damping (y = 0) the 
response function ( L N  > 0) 

F(‘7,w) = -Im G ( w ) / w  = (x/~)/BN-~(~)I { L N ( w ) l - ” 2  (4.’) 

considered as a function of frequency (U) for a fixed wave vector ( q )  consists of five 
bands of intensity. The spectrum is symmetric about w = 0. An example is shown in 
figure 1; additional examples can be found in papers by Lovesey (1988) and hntwin 

For the set of parameters chosen the undamped spectrum shows inverse square- 
root singularities at each band edge. It is possible with s” special values of q to 
find the value zero at a band edge. This arises when, as the band edge is approached, 
B N - , ( w )  vanishes with a power law dependence strong enough to cancel the square- 
root behaviour of the denominator. The finite value of the spectrum at w = 0 is a 
universal feature for modulated magnets. 

Given that the maximum band-edge frequency is 200 in our reduced units, a value 
of y = 0.10 k viewed as a relatively small damping parameter. Even so we see in 
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figure 1 that such a damping has a rronounced effect on the spectrum. In particular, 
there is no vestige of the singular structure at the lowest two band edges (0.570 and 
0.641), and the singular structures at 1.466 and 1.749 in the undamped spectrum 
are reduced to modestly sized peaks. Observe that there is almost no change in the 
magnitude of the spectrum at w = 0. Timing to results for a larger damping y = 0.5, 
results in figure 1 show that the spectrum is reduced to a featureless landscape. 
Results for other parameter sets, including different values of the periodicity number 
N ,  show that results given in figure 1 are quite typical, in as much that a small 
damping profoundly affects low-frequency structure found in the undamped spectrum 
and a modest damping removes most of the structure at all frequencies. 

5. Discussion 

Results for a model of a modulated (quasi-periodic) system including a collision 
damping show that damping has a pronounced effect on the frequency spectrum of 
excitations. While it is to be expected that singular structure in the undamped model 
is rendered smooth, it is perhaps a surprise that a small damping parameter bas quite 
the dramatic influence demonstrated in figure 1. The damping mechanism is a strong 
function of frequency and the damping parameter. It is shown that a small damping 
influences low-frequency slructure more strongly than it does high-frequency sIructure, 
while the response at w = 0 is insensitive to damping. 

A specific (microscopic) model for collision damping is required to estimate the 
damping parameter y. Such a model would most likely make y a function of the 
external wave vector q. Certainly, it is expected that in representing behaviour in a 
real material 7 must be allowed to depend on temperature, magnetic field, etc. 

A recent analysis of the WnsverSe spin fluctuation spectrum of thulium metal at 
a temperature, close to the ordering temperature where the structure is thought to be 
modulated, makes no mention of the fundamental signatures predicted for this phase 
(McEwen ef a1 1991). Rather, an interpretation is offered in terms of an approximate 
analysis of a magnetic model to which phenomcnological damping is addcd. Results 
from the model are then convoluted with a Gaussian whose width is varied so as to 
obtain agreement with the data sets, and the total width parameter is at least 20% 
of the width of the spectrum. In light of the findings based on the exact analysis of 
a quasi-periodic model provided here (damping) and by Lantwin (1990) (Gaussian 
resolution broadening), it is clear that a 20% degradation of spectra probably masks 
distinct signatures of the fundamental fragmented structure. In particular, it would 
not seem possible to have confidence in a weakly dispersive peak being labelled a 
crystal-field transition, for just such a feature has been shown to arise in the spectrum 
of a simple modulated (quasi-periodic) magnet. 
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